
Memory Allocator
Attack and Defense

Richard Johnson
richardj@microsoft.com
switech@microsoft.com

mailto:richardj@microsoft.com
mailto:switech@microsoft.com

 The memory manager is responsible for
tracking a program’s dynamic data storage.

 Unlike stacks which work based upon a
simple FIFO/LIFO concepts, heaps require
management routines to track the location
of free and allocated memory chunks

Dynamic Memory Management

 What approaches to dynamic memory
management have been developed?

 What are the security profiles of memory
managers used in mainstream OS’s today?

 What is the impact of security research on
memory manager design?

Dynamic Memory Management

 Today we will consider the following OS’s
and their memory allocators:
◦ Windows
◦ Linux
◦ Apple OS X
◦ OpenBSD

Dynamic Memory Management

 Today we will consider the following OS’s
and their memory allocators:
◦ Windows

 Windows Heap Manager
 Rockall Allocator

◦ Linux
 Doug Lea Malloc

◦ Apple OS X
 Poul-Henning Kamp Malloc

◦ OpenBSD
 OpenBSD Malloc

Dynamic Memory Management

 The primary difference between the memory
managers is how they track free buffers

 We will split them into systems that inline
management data on each chunk and those
that do not

 Management data inlined in the heap is
susceptible to modification when a memory
corruption occurs

What’s the Difference?

 Heaps with inlined management structs expose
user APIs that walk linked lists of buffers to locate
the appropriate buffer
◦ Doug Lea
◦ Windows Heap Manager

 Heaps without inlined management data try to take
advantage of kernel-supplied memory management
APIs and utilize array indexing to locate buffers
◦ Poul-Henning Kamp
◦ OpenBSD Malloc
◦ Rockall

What’s the Difference?

 Offensive security researchers focus on
adding reliability to exploitation methods or
finding new ways to manipulate
management routines to gain controllable
memory corruption

 Defensive security researchers aim to
mitigate known attacks or (rarely) attempt
new heap manager designs

Security Research on Heap
Allocators

 dlmalloc
◦ 2001 Michel "MaXX" Kaempf / Anonymous
◦ 2005 Phantasmal Phantasmagoria

 Windows Heap
◦ 2002 David Litchfield
◦ 2004 Matt Conover / Oded Horovitz
◦ 2005 SecurityPatrol

Security Research on Heap
Allocators

 PHKMalloc
◦ 2005 Yves Younan et al

 OpenBSD Malloc
◦ 2006 Ben Hawkes

Security Research on Heap
Allocators

 Basic mechanics:
 A region of memory is allocated to contain buffers
 An array of doubly linked lists tracking free buffers in

multiples of a fixed size (usually 8) is created
 On allocation a free chunk is unlinked from the

doubly linked list and the address is returned to the
program

 On free, a 8 byte header is written to the beginning
of a buffer and the chunk is added back to the list

 When two free buffers are adjacent they will be
merged into one larger chunk of free memory

 Lookaside lists*

Heaps with inline data

 Attacks
◦ Unlink

 Free buffer is removed from doubly linked list with corrupted
forward and backward pointers

 Attacker writes 4 bytes of controlled data to a controlled
location

◦ Coalesce
 Manipulating the flag indicating whether the previous chunk

is in use can be used with a fake chunk header to cause a 4
byte write to a controlled location

◦ Lookaside list
 The head of a lookaside list can be overwritten to later return

a controlled address to the next allocation of that size

Heaps with inline data

 Unlink Attack

◦ Scenario: Heap-based buffer overflow allows
for writing into adjacent free heap block

◦ Attack: Overwrite FLINK and BLINK values
and wait for next allocation

◦ Result: Allows one or more 4-byte writes to
controlled locations

Heaps with inline data

FREE HEAP BLOCK

_HEAP_ENTRY
 +0x000 Size
 +0x002 PreviousSize
 +0x004 SmallTagIndex
 +0x005 Flags
 +0x006 UnusedBytes
 +0x007 SegmentIndex
_LIST_ENTRY
 +0x000 Flink
 +0x004 Blink

mov dword ptr [ecx],eax
mov dword ptr [eax+4],ecx

EAX = Flink, ECX = Blink

 Lookaside Attack

◦ Scenario: Heap-based buffer overflow allows
for control of lookaside list management
structure

◦ Attack: First heap overwrite takes control of
Flink value in a free chunk with a lookaside
list entry
Allocation of the corrupted chunk puts the
corrupt Flink value into the lookaside list
Next HeapAlloc() of the same sized chunk
will return the corrupted pointer

◦ Result: Returns corrupted pointer from the
next allocation from the lookaside list which
allows for arbitrary length overwrites

Heaps with inline data

 Basic mechanics:
 Relies on and optimized for kernel provided virtual

memory management system
 Heap manager tracks allocated pages, allocated

chunks and free pages in a series of directories
 All chunks in a page are typically of the same size
 Adjacent free pages are coalesced

Heaps without inline data

 Attacks
◦ free()

 Control of a pointer passed to free can be abused to
free memory that contains one of the heap
management structures.

◦ pginfo / pgfree
 Manipulate the value returned by an allocation

Heaps without inline data

 free() attack

◦ Scenario: Heap-based buffer overflow allows
for control of pointers later passed to free()

◦ Attack: Free pages with control structures on
them

◦ Result: Later allocations will eventually
return the page with the control structures
and allow for further exploitation

Heaps without inline data

 pginfo attack

◦ Scenario: Heap-based buffer overflow allows
for control of the pginfo structure leading to
arbitrary memory corruption

◦ Attack: Heap overflow allows for
modification of the pginfo->free page
pointer.
Overwrite bits array to make pages seem
free

◦ Result: Allocation requests walk the structs
to find the appropriate sized buffers so
returning corrupted pointer allows for writes
to arbitrary locations.

Heaps without inline data

PGFREE

struct pgfree {
 struct pgfree *next;
 struct pgfree *prev;
 // free pages
 void *page;
 // base page dir
 void *pdir;
 // bytes free
 size_t size;
};

PGINFO

struct pginfo {
 struct pginfo *next;
 void *page;
 ushort size;
 ushort shift;
 ushort free;
 ushort total;
 uint bits[];
};

 dlmalloc
◦ glibc added safe unlinking

 Windows Heap
◦ Safe unlinking
◦ Checksum for size and flags
◦ XOR size, flags, checksum, and prevsize fields
◦ Lookaside list replaced by LFH in Vista

Heap Allocator Defense

 phkmalloc
◦ Nada

 OpenBSD malloc
◦ Nada

 System defenses such as ASLR and NX also
apply but are not part of the heap manager’s
architecture

Heap Allocator Defense

So what’s next?

“The Month of Kernel Bugs is a serious
wake-up call about the vulnerability of the
most fundamental element of the operating
system. Begin preparing now for more, and
more damaging, attacks against the OS
kernel.”

Rich Mogul – Gartner Nov. 2006
http://www.gartner.com/resources/144700/144700/learn_from_month_of_k
ernel_b_144700.pdf

Windows Kernel Pool Manager

 2005 SoBeIt “How to exploit Windows kernel
memory pool”

 Basic unlink() technique applies to the
kernel pool

Windows Kernel Pool Manager

Pools are managed by a pool descriptor, chunks are
managed by a pool chunk header
lkd> dt -v -r nt!POOL_DESCRIPTOR
struct _POOL_DESCRIPTOR, 14 elements, 0x1034 bytes
 +0x000 PoolType : Enum _POOL_TYPE
 +0x004 PoolIndex : Uint4B
 +0x008 RunningAllocs : Int4B
 +0x00c RunningDeAllocs : Int4B
 +0x010 TotalPages : Int4B
 +0x014 TotalBigPages : Int4B
 +0x018 Threshold : Uint4B
 +0x01c LockAddress : Ptr32 to Void
 +0x020 PendingFrees : Ptr32 to Ptr32 to Void
 +0x024 ThreadsProcessingDeferrals : Int4B
 +0x028 PendingFreeDepth : Int4B
 +0x02c TotalBytes : Uint4B
 +0x030 Spare0 : Uint4B
 +0x034 ListHeads : [512] struct _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x000 Flink : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x000 Flink : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x004 Blink : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x004 Blink : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x000 Flink : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x004 Blink : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes

Windows Kernel Pool Manager

lkd> dt -v -r nt!POOL_HEADER
struct _POOL_HEADER, 8 elements, 0x8 bytes
 +0x000 PreviousSize : Bitfield Pos 0, 9 Bits
 +0x000 PoolIndex : Bitfield Pos 9, 7 Bits
 +0x002 BlockSize : Bitfield Pos 0, 9 Bits
 +0x002 PoolType : Bitfield Pos 9, 7 Bits
 +0x000 Ulong1 : Uint4B
 +0x004 PoolTag : Uint4B
 +0x004 AllocatorBackTraceIndex : Uint2B
 +0x006 PoolTagHash : Uint2B

 The good news
◦ We’re active researching how to add appropriate

mitigations to the kernel memory management code

 The bad news
◦ Unlike user heaps, the kernel pool is globally

managed
◦ There aren’t any free bytes to use for checksums

and cookies
◦ Performance and compatibility concerns sometimes

trump security

Windows Kernel Pool Manager

 You can help. Contact us at
switech@microsoft.com if you are interested
in this research and want your ideas heard!

Windows Kernel Pool Manager

mailto:switech@microsoft.com

Questions?

	Slide 1
	Dynamic Memory Management
	Dynamic Memory Management
	Dynamic Memory Management
	Dynamic Memory Management
	What’s the Difference?
	What’s the Difference?
	Security Research on Heap Allocators
	Security Research on Heap Allocators
	Security Research on Heap Allocators
	Heaps with inline data
	Heaps with inline data
	Heaps with inline data
	Heaps with inline data
	Heaps without inline data
	Heaps without inline data
	Heaps without inline data
	Heaps without inline data
	Heap Allocator Defense
	Heap Allocator Defense
	Slide 21
	Windows Kernel Pool Manager
	Windows Kernel Pool Manager
	Windows Kernel Pool Manager
	Windows Kernel Pool Manager
	Windows Kernel Pool Manager
	Slide 27

