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 The memory manager is responsible for 
tracking a program’s dynamic data storage. 

 Unlike stacks which work based upon a 
simple FIFO/LIFO concepts, heaps require 
management routines to track the location 
of free and allocated memory chunks 

Dynamic Memory Management



 What approaches to dynamic memory 
management have been developed? 

 What are the security profiles of memory 
managers used in mainstream OS’s today? 

 What is the impact of security research on 
memory manager design? 

Dynamic Memory Management



 Today we will consider the following OS’s 
and their memory allocators: 
◦ Windows
◦ Linux
◦ Apple OS X
◦ OpenBSD 

Dynamic Memory Management



 Today we will consider the following OS’s 
and their memory allocators: 
◦ Windows

 Windows Heap Manager
 Rockall Allocator

◦ Linux
 Doug Lea Malloc

◦ Apple OS X
 Poul-Henning Kamp Malloc

◦ OpenBSD
 OpenBSD Malloc

Dynamic Memory Management



 The primary difference between the memory 
managers is how they track free buffers

 We will split them into systems that inline 
management data on each chunk and those 
that do not

 Management data inlined in the heap is 
susceptible to modification when a memory 
corruption occurs

What’s the Difference?



 Heaps with inlined management structs expose 
user APIs that walk linked lists of buffers to locate 
the appropriate buffer
◦ Doug Lea
◦ Windows Heap Manager

 Heaps without inlined management data try to take 
advantage of kernel-supplied memory management 
APIs and utilize array indexing to locate buffers
◦ Poul-Henning Kamp
◦ OpenBSD Malloc
◦ Rockall

What’s the Difference?



 Offensive security researchers focus on 
adding reliability to exploitation methods or 
finding new ways to manipulate 
management routines to gain controllable 
memory corruption

 Defensive security researchers aim to 
mitigate known attacks or (rarely) attempt 
new heap manager designs

Security Research on Heap 
Allocators



 dlmalloc
◦ 2001 Michel "MaXX" Kaempf / Anonymous
◦ 2005 Phantasmal Phantasmagoria 

 Windows Heap
◦ 2002 David Litchfield 
◦ 2004 Matt Conover / Oded Horovitz
◦ 2005 SecurityPatrol

Security Research on Heap 
Allocators



 PHKMalloc
◦ 2005 Yves Younan et al

 OpenBSD Malloc
◦ 2006 Ben Hawkes 

Security Research on Heap 
Allocators



 Basic mechanics: 
 A region of memory is allocated to contain buffers
 An array of doubly linked lists tracking free buffers in 

multiples of a fixed size (usually 8) is created 
 On allocation a free chunk is unlinked from the 

doubly linked list and the address is returned to the 
program

 On free, a 8 byte header is written to the beginning 
of a buffer and the chunk is added back to the list

 When two free buffers are adjacent they will be 
merged into one larger chunk of free memory 

 Lookaside lists*

Heaps with inline data



 Attacks 
◦ Unlink

 Free buffer is removed from doubly linked list with corrupted 
forward and backward pointers

 Attacker writes 4 bytes of controlled data to a controlled 
location

◦ Coalesce
 Manipulating the flag indicating whether the previous chunk 

is in use can be used with a fake chunk header to cause a 4 
byte write to a controlled location 

◦ Lookaside list
 The head of a lookaside list can be overwritten to later return 

a controlled address to the next allocation of that size

Heaps with inline data



 Unlink Attack

◦ Scenario: Heap-based buffer overflow allows 
for writing into adjacent free heap block

◦ Attack: Overwrite FLINK and BLINK values 
and wait for next allocation

◦ Result: Allows one or more 4-byte writes to 
controlled locations

Heaps with inline data

FREE HEAP BLOCK

_HEAP_ENTRY
 +0x000 Size
 +0x002 PreviousSize 
 +0x004 SmallTagIndex
 +0x005 Flags        
 +0x006 UnusedBytes 
 +0x007 SegmentIndex
_LIST_ENTRY
 +0x000 Flink    
 +0x004 Blink 

mov dword ptr [ecx],eax
mov dword ptr [eax+4],ecx 

EAX = Flink, ECX = Blink



 Lookaside Attack

◦ Scenario: Heap-based buffer overflow allows 
for control of lookaside list management 
structure

◦ Attack: First heap overwrite takes control of 
Flink value in a free chunk with a lookaside 
list entry
Allocation of the corrupted chunk puts the 
corrupt Flink value into the lookaside list
Next HeapAlloc() of the same sized chunk 
will return the corrupted pointer

◦ Result: Returns corrupted pointer from the 
next allocation from the lookaside list which 
allows for arbitrary length overwrites

Heaps with inline data



 Basic mechanics: 
 Relies on and optimized for kernel provided virtual 

memory management system 
 Heap manager tracks allocated pages, allocated 

chunks and free pages in a series of directories
 All chunks in a page are typically of the same size 
 Adjacent free pages are coalesced 

Heaps without inline data



 Attacks
◦ free()

 Control of a pointer passed to free can be abused to 
free memory that contains one of the heap 
management structures. 

◦ pginfo / pgfree
 Manipulate the value returned by an allocation

Heaps without inline data



 free() attack

◦ Scenario: Heap-based buffer overflow allows 
for control of pointers later passed to free()

◦ Attack: Free pages with control structures on 
them 

◦ Result: Later allocations will eventually 
return the page with the control structures 
and allow for further exploitation

Heaps without inline data



 pginfo attack

◦ Scenario: Heap-based buffer overflow allows 
for control of the pginfo structure leading to 
arbitrary memory corruption

◦ Attack: Heap overflow allows for 
modification of the pginfo->free page 
pointer. 
Overwrite bits array to make pages seem 
free

◦ Result: Allocation requests walk the structs 
to find the appropriate sized buffers so 
returning corrupted pointer allows for writes 
to arbitrary locations. 

Heaps without inline data

PGFREE 

struct pgfree  {
 struct pgfree *next; 
 struct pgfree *prev;
 // free pages 
 void          *page; 
 // base page dir
 void          *pdir;
 // bytes free 
 size_t         size; 
};

PGINFO

struct pginfo  {
 struct pginfo *next; 
 void          *page; 
 ushort        size;
 ushort        shift;
 ushort        free;
 ushort        total;
 uint          bits[];
};



 dlmalloc
◦ glibc added safe unlinking

 Windows Heap
◦ Safe unlinking
◦ Checksum for size and flags
◦ XOR size, flags, checksum, and prevsize fields
◦ Lookaside list replaced by LFH in Vista 

Heap Allocator Defense



 phkmalloc
◦ Nada

 OpenBSD malloc
◦ Nada

 System defenses such as ASLR and NX also 
apply but are not part of the heap manager’s 
architecture

Heap Allocator Defense



So what’s next? 



“The Month of Kernel Bugs is a serious 
wake-up call about the vulnerability of the 
most fundamental element of the operating 
system. Begin preparing now for more, and 
more damaging, attacks against the OS 
kernel.”

Rich Mogul – Gartner Nov. 2006
http://www.gartner.com/resources/144700/144700/learn_from_month_of_k
ernel_b_144700.pdf

Windows Kernel Pool Manager



 2005 SoBeIt “How to exploit Windows kernel 
memory pool”

 Basic unlink() technique applies to the 
kernel pool 

Windows Kernel Pool Manager



Pools are managed by a pool descriptor, chunks are 
managed by a pool chunk header
lkd> dt -v -r nt!POOL_DESCRIPTOR
struct _POOL_DESCRIPTOR, 14 elements, 0x1034 bytes
   +0x000 PoolType         : Enum _POOL_TYPE
   +0x004 PoolIndex        : Uint4B
   +0x008 RunningAllocs    : Int4B
   +0x00c RunningDeAllocs  : Int4B
   +0x010 TotalPages       : Int4B
   +0x014 TotalBigPages    : Int4B
   +0x018 Threshold        : Uint4B
   +0x01c LockAddress      : Ptr32 to Void
   +0x020 PendingFrees     : Ptr32 to Ptr32 to Void
   +0x024 ThreadsProcessingDeferrals : Int4B
   +0x028 PendingFreeDepth : Int4B
   +0x02c TotalBytes       : Uint4B
   +0x030 Spare0           : Uint4B
   +0x034 ListHeads        : [512] struct _LIST_ENTRY, 2 elements, 0x8 bytes
      +0x000 Flink            : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
         +0x000 Flink            : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
         +0x004 Blink            : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
      +0x004 Blink            : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
         +0x000 Flink            : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes
         +0x004 Blink            : Ptr32 to struct _LIST_ENTRY, 2 elements, 0x8 bytes

Windows Kernel Pool Manager

lkd> dt -v -r nt!POOL_HEADER
struct _POOL_HEADER, 8 elements, 0x8 bytes
   +0x000 PreviousSize     : Bitfield Pos 0, 9 Bits
   +0x000 PoolIndex        : Bitfield Pos 9, 7 Bits
   +0x002 BlockSize        : Bitfield Pos 0, 9 Bits
   +0x002 PoolType         : Bitfield Pos 9, 7 Bits
   +0x000 Ulong1           : Uint4B
   +0x004 PoolTag          : Uint4B
   +0x004 AllocatorBackTraceIndex : Uint2B
   +0x006 PoolTagHash      : Uint2B



 The good news
◦ We’re active researching how to add appropriate 

mitigations to the kernel memory management code 

 The bad news
◦ Unlike user heaps, the kernel pool is globally 

managed
◦ There aren’t any free bytes to use for checksums 

and cookies 
◦ Performance and compatibility concerns sometimes 

trump security

Windows Kernel Pool Manager



 You can help. Contact us at 
switech@microsoft.com if you are interested 
in this research and want your ideas heard!

Windows Kernel Pool Manager

mailto:switech@microsoft.com


Questions? 
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